首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2699篇
  免费   542篇
  国内免费   330篇
测绘学   118篇
大气科学   245篇
地球物理   1069篇
地质学   958篇
海洋学   286篇
天文学   22篇
综合类   154篇
自然地理   719篇
  2024年   4篇
  2023年   19篇
  2022年   65篇
  2021年   117篇
  2020年   159篇
  2019年   111篇
  2018年   130篇
  2017年   130篇
  2016年   140篇
  2015年   176篇
  2014年   176篇
  2013年   340篇
  2012年   152篇
  2011年   155篇
  2010年   143篇
  2009年   131篇
  2008年   146篇
  2007年   151篇
  2006年   141篇
  2005年   112篇
  2004年   134篇
  2003年   110篇
  2002年   88篇
  2001年   87篇
  2000年   55篇
  1999年   73篇
  1998年   56篇
  1997年   63篇
  1996年   36篇
  1995年   26篇
  1994年   27篇
  1993年   29篇
  1992年   17篇
  1991年   14篇
  1990年   12篇
  1989年   10篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1982年   3篇
  1980年   4篇
  1978年   3篇
排序方式: 共有3571条查询结果,搜索用时 27 毫秒
1.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
2.
城市绿化覆盖是城市生态系统的重要组成部分,合理的绿化率和绿化布局可以改善城市环境,提高城市人居适宜性。研究中将2005、2010、2015年北京市土地利用(LUC)数据中的城市居民用地作为城区范围,应用Landsat 5、GF-1影像数据和MODIS产品,利用支持向量机的监督分类方法,提取了2005、2010、2015年的北京市城市绿化覆盖数据,并获取了同期的植被指数(NDVI)数据;继而以城市绿化覆盖率、绿化覆盖均匀度和植被指数为评价指标,在公里栅格和行政区2个尺度上探讨了北京市城市绿化覆盖的空间分布格局和时间变化动态特征。研究表明:① 3个指标在空间和时间2个维度、区县和栅格2个尺度上都表现一致。这反映北京市过去10年中,在绿化面积增加的同时,绿化的空间布局得到优化改善,绿化的质量得到提高。② 2005-2015年,北京市城市绿化覆盖面积由518.93 km2 增加到1405.54 km2,绿化覆盖率由39.9%增加到49.13%,绿化覆盖均匀度由0.598增加到0.653,植被指数由0.42增加至0.5。③ 北京市城市绿化建设存在明显的时空差异。中心城区绿化建设缓慢,成效不明显;重大绿化建设成果主要集中在城市边缘地区和远郊区县。城市绿化改善过程主要发生在2005-2010年。  相似文献   
3.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
4.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
5.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   
6.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
8.
Based on the δ13C and δ18O fluctuation of lacustrine carbonate, CaCO3 content and sporo-pollen data, a palaeoclimatic history of Bosten Lake during the Holocene has been outlined, several stages of climatic changes are divided, and the following result es are obtained: (1) Palaeoclimatic changes revealed by carbonate isotope around Bosten Lake are basically identical with that revealed by other geological records in Xinjiang. Environmental changes presented apparent Westlies Style model: during cold period, relative humidity increased, δ18O, δ13C and CaCO3 appeared low; but in warm periods, the dry regime aggravated. (2) The temperature reflected by δ18O exist evident features being increase in the late period during the Holocene. Together with the δ13C, pollen and CaCO3 analyses, several cold and warm phases which are of broad regional significance can be identified. The warm peaks occurred at about 11.0 ka B.P., 9.4 ka B.P., 7.5 ka B.P., 5.0 ka B.P., 3.0 ka B.P. and 2.0 ka B.P.; the cold peaks at 11.5 ka B.P., 10.5 ka B.P., 8.8 ka B.P., 5.5 ka B.P., 3.3 ka B.P., 2.2 ka B.P. and 1.5 ka B.P.. (3) Several climatic events with the nature of “abrupt climatic changes” are revealed in the periods of 11.0 ka B.P. −10.5 ka B.P., 9.4 ka B.P. −8.8 ka B.P., 5.5 ka B.P. −5.0 ka B.P. and 2.0 ka B.P. −1.5 ka B.P.. (4) The results show that carbonate isotopic record of lacustrine sediment in arid area is very sensitive to climatic changes, and may be play a very important role in understanding the features and mechanism of palaeoclimatic changes.  相似文献   
9.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.
To drive an atmospheric general circulation model (AGCM), land surface boundary conditions like albedo and morphological roughness, which depend on the vegetation type present, have to be prescribed. For the late Quaternary there are some data available, but they are still sparse. Here an artificial neural network approach to assimilate these paleovegetation data is investigated. In contrast to a biome model the relation between climatological parameters and vegetation type is not based on biological knowledge but estimated from the available vegetation data and the AGCM climatology at the corresponding locations. For a test application, a data set for the modern vegetation reduced to the amount of data available for the Holocene climate optimum (about 6000 years B.P.) is used. From this, the neural network is able to reconstruct the complete global vegetation with a kappa value of 0.56. The most pronounced errors occur in Australia and South America in areas corresponding to large data gaps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号